If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+396t+100=0
a = -16; b = 396; c = +100;
Δ = b2-4ac
Δ = 3962-4·(-16)·100
Δ = 163216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{163216}=404$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(396)-404}{2*-16}=\frac{-800}{-32} =+25 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(396)+404}{2*-16}=\frac{8}{-32} =-1/4 $
| 37x+5-(23x-5)=5x+17 | | 144=18x | | 3y=7×+3×+36= | | 3y=7×+3×+36 | | (6x+6)(4)=(4x)9 | | 136=68x | | 1.50+15p=29.50 | | -2y-4=-5y+8 | | 1.5p=29.50 | | -2y-4=5y+8 | | 2(6x+6)+4(2)=2(4x)+4(2) | | 2(6x+6)+4(2)=2(4x)+18 | | 16=20/x | | 4(3m-2)=28 | | 38=2(3x-9)+2x | | 13x+25=6x+4 | | 100+5x-x=180 | | 3x+0.6x=0 | | |2x+5|=|3x+4| | | |5z+3|-7=34 | | 5n-1=12n | | 0.3t+0.7(16−t)=8 | | 2/3b+11=3 | | 2/3b+11=2 | | 4t+13=10t | | 500+1300x-100x^2=4100 | | 500x+1300x-100x^2=4100 | | 6q-1=11q | | 3(2x+4)=4x+36 | | 3(2x+$)=4x36 | | (w-6)=(w+4) | | 3/2p+9=13 |